Chapter 4

Systems of ODEs. Phase Plane.
Qualitative Methods
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4.1 Systems of ODEs as Models
Example 1 Mmixing Problem Involving Two Tanks

A mixing problem involving a single tank can be modeled
by a single ODE. The model will be a system of two first-
order ODEs.

Tank T, and T, In Fig. 77 contain initially 100 gal of water
each. In T, the water is pure, whereas 150 Ib of fertilizer are
dissolved in T,. By circulating liquid at a rate of 2 gal/min
and stirring (to keep the mixture uniform) the amounts of
fertilizer y,(t) in T, and y,(t) in T, change with time t.

How long should we let the liquid circulate so that T, will
contain at least half as much fertilizer as there will be left in
T,?

continued
(f)) BxEEE /S P 130



FIQ.77. Fertilizer content in Tanks T1 (lower curve)
and T2
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Solution. Step 1. Setting up the model. As for a single tank,
the time rate of change y',(t) of y,(t) equals inflow minus
outflow. Similarly for tank T,. From Fig. 77 we see that

2 2
1] . . . /
1 = Inflow/ — Outflow/ = ——Vo — -V Tank T
Vi nflow/min uttlow/min “ﬂ))z Hﬂ)jl (Tank 77)
, ) _ _ 2 2
vo = Inflow/min — Outflow/min = ——v{ — ——< Vo (Tank Ty).

100 - 100 -

Hence the mathematical model of our mixture problem is the
system of first-order ODES

y'; =-0.02y, + 0.02y, (Tank T,)
y', = 0.02y, — 0.02y, (TanI((m'lr']%l)n.ueo|
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V
As a vector equation with column vector y - [ 1} and matrix A

this HECOMeS Y2

—0.02 0.02
y" = Ay, where A = .
0.02 —-0.02

Step 2. General solution.

\_

As for a single equation, we try an exponential function of t,
(1) y =xeM, Theny' = AxeM = AxeM,

Dividing the last equation ixeM™ = AxeM by eM and
Interchanging the left and right sides, we obtain
AX = AX.
continued
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Since nontrivial solutions are needed, we have to look for
eigenvalues and eigenvectors of A. The eigenvalues are the
solutions of the characteristic equation

2
( ) —0.02 = A 0.02
det (A — Al =

‘=Pﬂm—hﬁ—0m2=uA+amyﬂ1
0.02 —0.02 — A

We see that A, = 0 and A, = —0.04. For our present A this gives
—0.02x, + 0.02x, =0 (A, =0)
(-0.02 + 0.04)x, + 0.02x,=0 (A, =-0.04)

continued
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Hence x; = X, and x; = —X,, respectively, and we can take x; =
X, = 1 and x; = —X, = 1. This gives two eigenvectors
corresponding to A, = 0 and A, = —-0.04, respectively,

namely,
x D = |:l:| and x? = |: l:| :
| — 1

From (1) and the superposition principle, we thus obtain a
solution

3 l l
Aqt 9y Aot _
( ) y = CIX('DE,’ U (?2):{'2) e = 1 |: + co e~ 0-04
l —1

where ¢, and c, are arbitrary constants. Later we shall call this
a general solution.

continued
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Step 3. Use of Initial conditions. The initial conditions are

y1(0) = 0 (no fertilizer in tank T,) and y,(0) = 150. From this
and (3) with t = 0 we obtain

I I c1 + co 0
y(0) = ¢4 + ¢y — - :
I —1 C1 — (9 150

In components thisis ¢, + ¢, =0, ¢, — ¢, = 150. The solution Is
C, = 75, C, =—75. This gives the answer

y = 75xP — 75xPe700% = 75 [l} ~ 75 [ l} e 0-0%
1 —1

y, = 75— 75e004; y, = 75 + 75¢:0.04

Figure 77 shows the exponential increase of yl and the
exponential decrease of y2 to the common limit 75 Ib.

continued
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Step 4.

Answer. T, contains half the fertilizer amount of T, if it contains
1/3 of the total amount, that is, 50 Ib. Thus

y, =75 75e 004t =50, g004t=1/3
t = (In 3)/0.04 = 27.5.
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y'=Ay;  y(0)=y,
D=X"'AX=XDX"=A
y'=XDXy
Xy'=DX™y
Letz=X"'Yy = z'=Dz
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y'(t)=Ay(t)+Br(t); vy(0)=y,
g(t)

D=X"AX=XDX*=A

y' = XDX Yy +g

Xy =DX 'y + X g

Letz=X"'yand h=X"g

= Z'=Dz+h
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][4 0 - 0a] [h()
z.; |0 4 : z.2 N , (1)
: : : .0 :

_Zr']_ 0 - 0 Az _hn(t)_

Zl
Z n
y=Xz=[x(1) x@ ... x(”)] 2| = ka(k)
. k=1
_Zn_
n n
=) ¢ xMeM 4 Zx(k)eﬂ“t‘[hk (r)e*dr
K &
Vi Vo
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Example 2 Electrical Network

Find the currents 1,(t) and 1,(t) In the network as shown.
Assume all currents and charges to be zero at t = 0, the instant

when the switch is closed.

Switch
t=0" T

E =12 volts —

T

L=1henry (C=0.25 farad
| L

T LY

R. =4 ohms

R_. =6 ohms

continued
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Solution. Step 1. Setting up the mathematical model. The
model of this network is obtained from Kirchhoff’s voltage
law, as In Sec. 2.9 (where we considered single circuits). Let
1,(t) and I,(t) be the currents in the left and right loops,
respectively. In the left loop the voltage drops are LI', = I'; [V]
over the inductor and R,(l; — I,) = 4(l; — 1,) [V] over the
resistor, the difference because I, and |, flow through the
resistor in opposite directions. By Kirchhoff’s voltage law the
sum of these drops equals the voltage of the battery; that is, I',
+4(1, - 1,) = 12, hence

(4a) ' = 41, + 41, + 12,

continued
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In the right loop the voltage drops are R,I, = 61, [V] and
R,(I,—1,) =4(l, — 1) [V] over the resistors and

(1/C)J1, dt = 4J1, dt [V] over the capacitor, and their sum is
Zero,

6ly + 4(Iy — 1) + 4 f Iy dt =0 or 10I, — 41, + 4 f I, dt = 0.
Division by 10 and differentiation gives I', — 0.41'; + 0.41, = 0.

To simplify the solution process, we first get rid of 0.4l',
which by (4a) equals 0.4(—41, + 41, + 12). Substitution Into
the present ODE gives

', = 0.41', — 0.41, = 0.4(-4l, + 41, + 12) — 0.41,

continued
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and by simplification
(4b) ', =-1.61, +1.21, + 4.8.

In matrix form, (4) is (we write J since | is the unit matrix)

I —4.0 4.0 12.0
(5) J =AJ + g, where J = . A= , g = .

I —1.6 1.2 4.8

Step 2. Solving (5). Because of the vector g this Is a
nonhomogeneous system.

We try to proceed as for a single ODE, solving first the
homogeneous system J' = AJ by substituting J = xeM

J' = xeM = AxeM

. AX =X continued
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Hence to obtain a nontrivial solution, we again need the
eigenvalues and eigenvectors:

| 2 l
A =2, xP= [ } -, Ao = —0.8, xP = [ } .
| 0.8
Hence a “general solution” of the homogeneous system Is
J,, = ¢, xWe2t + ¢, x(2)g 08t

For a particular solution of the nonhomogeneous system (5),
since g Is constant, we try a constant column vector J, = a
with components a,, a,.

Then J', = 0, and substitution into (5) gives

par |40 40]fa] [120] [0
°7| 16 12]/a,| | 48] |0 continued
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—4.0a, +4.0a, +12.0=0
—-1.6a, +1.2a, + 4.8 = 0.
The solution isa, = 3, a, = 0; thus a - B} . Hence

6) J=J,+J,=cxBe?t+cx@el8 + g;

2 1 3
=c,| . e +c, e % +
1 0.8 0

In components,
- -2t -0.8t
|, =2c,e <t +ce™ et + 3
A -0.8t
|, =c,e<'+ 0.8c,e™°h
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The initial conditions give
1,(0)=2c,+c,+3=0
1,(0) =c, +0.8¢c, =0.

Hence c, = —4 and ¢, = 5. As the solution of our problem we
thus obtain

(7) J = —4xWe2t + 5x(2)e 08t + 3,
In components (Fig. 79b),
|1 — _8e-2’[ + 56-0.8'[ + 3

|, = —4est + 408t
continued
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FIg9.79. Currentsin Example 2

I(t)

(a) Currents Il

(upper curve)
and I,

(b) Trajectory [I,(t), L()T
in the I,1,-plane
(the “phase plane”)
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Conversion of an nth-Order ODE to a System

! Conversion of an ODE \

An nth-order ODE

(8) yO =F(ty,y, - y"™)
can be converted to a system of n first-order ODEs by setting
(9) Yi=Y, Y, = y" Yy = y"’ e Y= y(n—l)_

This system is of the form

(10)

! — 3
V-1 = In
, { hl ? . e ?
Vo = F(Iv Vi, Vo, > }"n)-
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Example 3 Mass on a Spring

Let us consider the free motions of a mass on a spring

" ' C
my +cy +ky=20 or yi=——y — —y.

continued
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V1 i i

_‘ we get in matrix form
Ve — -
e 0 | V1

!
}T f— A }T f— k

Settingy = [

The characteristic equation Is

—A I

det (A — AI) = & - — M+ —A1+—=0.
— —_— A m m
m m

For an illustrative computation, letm =1, c =2, and k = 0.75:
A2+ 20+ 0.75 = (A+ 0.5)(A+ 1.5) = 0.
This gives the eigenvalues A, = -0.5and A, = -1.5.

continued
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Eigenvectors follow from the first equation in A — Al = 0,
which is —Ax; + x, = 0.

For A, this gives 0.5x;, + x, = 0, say, X; = 2, X, = —1.

For A, = 1.5 it gives 1.5x; + X, = 0, say, x; = 1, x, = -1.5.
These eigenvectors

2 | | 21 . | ,
X(_l_) _ ’ X(_Z_) _ give y = ¢, (_')—O‘at + ¢y (_')—l‘at'
—1 —1.5 —1 —1.5

This vector solution has the first component
y — yl — 2cle-0.5t + Cze-l.St

which is the expected solution. The second component is its
derivative

Y, =Yy, =Yy =—-c,e%t—15¢c,el
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g0 gt T gpe T Ty
y,(t)=y(t)

dy (t dy, (t
y, (1) = y(): i (1)

dt dt

(1) = d’y(t) _d dy(t) dy,(t)
’ dt>  dt dt dt

_d™y(t) dy,, (1)

t) = —

Yot (1) dt"2 dt
Cd™hy(t)  dy,, (1)

¥ (1) = gt"t dt
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Phase Variable Canonical Form

T=Ay(t)+Br(t)
"0 1 0 0 0 0 |
0 O 1 0 0
0 0 0 1 0 0
A =
0 0 0 0 0 1
__an A, —8,, —d,53 —&,4 - _a'l_nxn
-
0
a_|:
0
_1_n><1
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Vandermonde Matrix
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X!
| (i
let x = X? =
()
2 -1 0 0
0 4 -1 0
0 0 4 -1

(A1-A)xY =0
0 || x

0 || xIV

0 || x{V

ﬂ,l -1 Xr(li—)l
a, A+a | x)




() _ ()
AX =X’ =0

() _ () _
AX =Xy’ =0

(i) (i) _
Z’lxn—l -X;’ =0

n

a, X" +a, X+ +ax + (4 +a,)x" =0

Let x® =1

S0 = =g XD =R e = A K =
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Example

(f) BXEEE/ P

0 1 0
A=l0 0 1
6 -11 -6
A=-14=-21=-3
101 17
X=|-1 -2 -3
1 4 9
1 0 0
XAX=|0 -2 0
0 0 -3




4.3 Constant-Coefficient Systems.
Phase Plane Method

® THEOREM L ™

General Solution

If the constant matrix A in the system (1) has a linearly
Independent set of n eigenvectors, then the
corresponding solutions y&, ..., y in (4) form a basis
of solutions of (1), and the corresponding general
solution is

(n) , Ml

Aqt
\(\5) y = cxPe™ + - + ¢ x™e /
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How to Graph Solutions in the Phase Plane

We shall now concentrate on systems (1) with
constant coefficients consisting of two ODEs

Y1 = any:tany,
(6) y'=Ay; In components,

Yo = @Y T ay.
Of course, we can graph solutions of (6),
(1)

| Vao(1) |

(7) y(1) =

continued
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as two curves over the t-axis, one for each component
of y(t). (Figure 79a in Sec. 4.1 shows an example.)
But we can also graph (7) as a single curve in the
y.Y,-plane. This is a parametric representation
(parametric equation) with parameter t. (See Fig. 79b
for an example. Many more follow. Parametric
equations also occur in calculus.) Such a curve is
called a trajectory (or sometimes an orbit or path) of
(6). The y,y,-plane is called the phase plane. If we fill
the phase plane with trajectories of (6), we obtain the
so-called phase portrait of (6).
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EXAMPLE]1 Trajectories in the Phase Plane
(Phase Portrait)

In order to see what is going on, let us find and graph
solutions of the system

-3 1 j‘i = —3y; + Vo
(8) v = Ay = [ J y,»  thus
2 y

I -3

Solution. By substituting y = xeM and y' = xeM and
dropping the exponential function we get AX = AX. The
characteristic equation is

—3 — A l
det (A — AI) =

‘=A2+6/\+8:0.
| =3 -

This gives the eigenvalues A, = -2 and A, = —4.
Eigenvectors are then obtained from
(-3 - AN)X; +X%x,=0.

continued
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For A, = -2 this is —x, + X, = 0. Hence we can take x(
=[1 1]". For A, = —4 this becomes x, + X, = 0, and an
eigenvector is x@ = [1 -1]'. This gives the general
solution

V1 . - I . 1
y = = Cly('l) + (.‘2}-’(2) = Cq |: :| T2t 4 Co |: :| e 4
Yo I —1

Figure 81 shows a phase portrait of some of the
trajectories (to which more trajectories could be added
If so desired). The two straight trajectories correspond
to ¢c; = 0 and ¢, = 0 and the others to other choices of
Cy, C,.
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Critical Points of the System (6)

The point y = 0 in Fig. 81 seems to be a common
point of all trajectories, and we want to explore the
reason for this remarkable observation. The answer
will follow by calculus. Indeed, from (6) we obtain

dvs  yodi vy

9) o=

y ! / - y - v
dy, v, dt y; 41 T a12)e

(21V1 T d22V2

This associates with every point P: (y,, Y¥,) a unique
tangent direction dy,/dy, of the trajectory passing
through P, except for the point P = P,: (0, 0), where
the right side of (9) becomes 0/0. This point P,, at
which dy,/dy,; becomes undetermined, Is called a
critical point of (6).
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Five Types of Critical Points
EXAMPLE1L (Continued) Improper Node (Fig. 81)

An improper node is a critical point P, at which all the
trajectories, except for two of them, have the same
limiting direction of the tangent. The two exceptional
trajectories also have a limiting direction of the tangent
at P, which, however, is different.

The system (8) has an improper node at 0, as its phase
portrait Fig. 81 shows. The common limiting direction at
0 is that of the eigenvector x) = [1 1] because e*
goes to zero faster than e? as t increases. The two
exceptional limiting tangent directions are those of x(2
=[1 -1]T and —x©@ =[-1 1]".

continued
@D BxinE s P 142



F19.81. Trajectories of the system (8) (Improper node)

Yo

N

\ y(Z)(t)
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EXAMPLEZ2 Proper Node (Fig. 82)

A proper node is a critical point PO at which every
trajectory has a definite limiting direction and for any

given direction d at P, there is a trajectory having d as
Its limiting direction.

The system

!
! I 0 Vi =W
( 10) y = ( y, thus P .

) I

continued
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has a proper node at the origin (see Fig. 82). Indeed,
the matrix is the unit matrix. lts characteristic equation
(1 —A)? = 0 has the root A = 1. Any x # 0 is an
eigenvector, and we can take [1 O]" and [0 1]".
Hence a general solution is

7 07 v = g
y = cq ¢’ + co e or . or C1V2 = C2)1.
0 l Vg = Cg€

continued
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F19.82. Trajectories of the system (10) (Proper node)

Y2

(f) BxGEE S P 142



EXAMPLES3 Saddle Point (Fig. 83)

A saddle point is a critical point P, at which there are
two Iincoming trajectories, two outgoing trajectories,

and all the other trajectories in a neighborhood of P,
bypass P,.

The system

, 1 0 .\'i = VN
(1 1) y = Y, thus f
2

0 -1

continued
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has a saddle point at the origin. Its characteristic
equation (1 —A)(—1 —A) = 0 has the roots A; = 1 and A,
=-1. For A;==1 an eigenvector [1 0]" is obtained from
the second row of (A —Al)x = 0, that Is, Ox,; + (-1 —
1)x, = 0. For A, = -1 the first row gives [0 1]'. Hence
a general solution is

t
| 0 Y1 = 1€
vy =y ef + ¢y e’ or s or Y1y2 = const.
0 1 Vg = C9€

This Is a family of hyperbolas (and the coordinate
axes); see Fig. 83.

continued
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F19.83. Trajectories of the system (11) (Saddle point)

Yo
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EXAMPLE4 Center (Fig. 84)

A center Is a critical point that is enclosed by infinitely
many closed trajectories.

The system

’ 0 I Vi = Vo
(12) ) [_4 {J Ys thus :
has a center at the origin. The characteristic equation
A2 + 4 = 0 gives the eigenvalues 2i and -2i. For 2i an
eigenvector follows from the first equation —2ix; + X, =
0 of (A =ADx = 0, say, [1 2i]'". For A = =2i that
equation is —(-2i)x, + X, = 0 and gives, say, [1 -2i].
Hence a complex general solution is

- 2i —2it
| it | it Y1 = le,’z‘zt + Co€ ‘
(12*) y = ¢ e+ ¢y e thus

. . it - =2t
2! 2! Yo = 2((?](-?2'2T — 21(,26,’ .
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The next step would be the transformation of this
solution to real form by the Euler formula (Sec. 2.2).
But we were just curious to see what kind of
eigenvalues we obtain In the case of a center.
Accordingly, we do not continue, but start again from
the beginning and use a shortcut. We rewrite the
given equations in the form y'; = vy,, 4y, = =y',; then
the product of the left sides must equal the product of
the right sides,

)' )' . . & &
4y1v1 = —VoVo. By integration, 2.\-12 + %yzz = const.

This is a family of ellipses (see Fig. 84) enclosing the

center at the origin. |
continued
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F19.84. Trajectories of the system (12) (Center)
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EXAMPLES Spiral Point (Fig. 85)

A spiral point is a critical point P, about which the
trajectories spiral, approaching P, as t — o(or tracing
these spirals in the opposite sense, away from P,).

The system
[—1 1} Vi = v oy
.Y’ = Yy, thus
(13) —1 —1 ‘é — V1 7 V2
continued
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has a spiral point at the origin, as we shall see. The
characteristic equation is A + 2A+ 2 = 0. It gives the
eigenvalues -1 + | and -1 — [|. Corresponding
eigenvectors are obtained from (-1 —A)x; + X, = 0.
For A = -1 + | this becomes —ix; + X, = 0 and we can
take [1 i]" as an eigenvector. Similarly, an
eigenvector corresponding to =1 — i is [1 —i]". This
gives the complex general solution

I _ l A
[ —1

continued

() BxGEE S P 144



The next step would be the transformation of this
complex solution to a real general solution by the
Euler formula. But, as in the last example, we just
wanted to see what eigenvalues to expect in the case
of a spiral point. Accordingly, we start again from the
beginning and Instead of that rather lengthy
systematic calculation we use a shortcut. We multiply
the first equation in (13) by y,, the second by y,, and
add, obtaining

YiY'1 + YoY's = —(Y1% + Y,9).

continued
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We now introduce polar coordinates r, t, where r2 =
y,? + y,2. Differentiating this with respect to t gives 2rr’
= 2y,y'; + 2y,Y',. Hence the previous equation can be

written
' = —r2,
Thus, r' = —r, dr/r =—dt, In|r| =—t+c*, r=ce.

For each real c this is a spiral, as claimed. (see Fig.
85).

continued
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F10.85. Trajectories of the system (13) (Spiral point)
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EXAMPLEG No Basis of Eigenvectors Available.
Degenerate Node (Fig. 86)

This cannot happen if A in (1) is symmetric (a,; = ay,
as in Examples 1-3) or skew-symmetric (a,; = —ay,
thus a; = 0). And it does not happen in many other
cases (see Examples 4 and 5). Hence it suffices to
explain the method to be used by an example.

Find and graph a general solution of

I 2

4 17
(14) y' = Ay = [_ y

continued
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Solution. A Is not skew-symmetric! Its characteristic
equation Is

4 — A I

clet(A—/\I)=‘ ‘=A2—6/\+9=(/\—3)2=0.

-1 2=

It has a double root A= 3. Hence eigenvectors are
obtained from (4 —A)x; + X, = 0, thus from x; + x, = 0,
say, x1) = [1 —1]" and nonzero multiples of it (which
do not help). The method now is to substitute

y@ = xteM + ueM

continued
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with constant u = [u; u,]" into (14). (The xt-term
alone, the analog of what we did in Sec. 2.2 in the
case of a double root, would not be enough. Try it.)

This gives
y'@) = xeM + AxteM + AueM = Ay®@ = AxteM + AueN,

On the right, Ax = AX. Hence the terms AxteM cancel,
and then division by eM gives

X +Au = Au, thus (A -ADu = x.
Here A=3 and x =[1 -1]', so that
|:4—3 I :| |: I:| Uy +up =1
(A — 3)u = u= . thus
—1 2 -3 —1 —uy — g = —1.
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A solution, linearly independent of x =[1 —1]",isu =
[0 1]". This yields the answer (Fig. 86)

_ ) I ] 0
y = (?1}-*(1') + (?23-*('2') =1 |: :| E?gt + (?2(|: :| r+ |: :|) f?gt.
— 1 —1 |

The critical point at the origin Is often called a
degenerate node. ¢,y gives the heavy straight line,
with ¢, > 0 the lower part and c, < O the upper part of
it. y@ gives the right part of the heavy curve from 0
through the second, first, and—finally—fourth
quadrants. —y(@ gives the other part of that curve.

continued
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F19.86. Degenerate node in Example 6

.
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4.4 Criteria for Critical Points. Stability

We continue our discussion of homogeneous linear
systems with constant coefficients

!
din diz Vi = a1 T digyz

(1) v =Ay= |: :| Y in components,

/
(121 (29 Vo = d21V1 T d22Ys.
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dys Vo dt (1911 T U229

@ -

dyi vy dt d11Y1 T 12)2

We also recall from Sec. 4.3 that there are various
types of critical points, and we shall how see how
these types are related to the eigenvalues. The latter
are solutions A=A; and A, of the characteristic
equation

a1 — A (19

(4) det (A — AD) = = A% — (411 + as9)A + det A = 0.

(91 (loo — A

continued
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This is a quadratic equation A> — pA + g = 0 with
coefficients p, g and discriminant A given by

(O) p=a +a,, q=det A =a,; a,, — a;ya,,
A = p? —4aq.

From calculus we know that the solutions of this
equation are

(6) A = 3(p + VA, Ay = 3(p — VA).
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Table 4.1 Eigenvalue Criteria for Critical Points

(Derivation after Table 4.2)

Name P=A+ A | g=2Ay | A= (A; — Ay)* | Comments on Ay, Ay
(a) Node qg >0 A=0 Real, same sign
(b) Saddle point qg <0 Real, opposite sign
(c) Center p= qg >0 Pure imaginary
(d) Spiral point p#F0 A<O Complex, not pure
imaginary
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Stability

® DEFINITION

Stable, Unstable, Stable and Attractive(l)

A critical point P, of (1) is called stable if, roughly, all
trajectories of (1) that at some instant are close to P,
remain close to P, at all future times; precisely: if for
every disk D, of radius €< 0 with center P, there is a disk
Ds; of radius & > 0 with center P, such that every
trajectory of (1) that has a point P, (corresponding to t =
t, say) in D has all its points corresponding tot2t, in D,.
See Fig. 89.

continued
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® DEFINITION

Stable, Unstable, Stable and Attractive(2)

~

P, Is called unstable if P, Is not stable.

P, Is called stable and attractive (or asymptotically
stable) if P, is stable and every trajectory that has a
point in D5 approaches P, as t —«. See Fig. 90. /

\_
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F19.89. stable critical point P, of (1) (The trajectory
Initiating at P, stays in the disk of radius &.)
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F19.90. stable and attractive critical point PO of (1)
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Table 4.2 Stability Criteria for Critical Points

Type of Stability p =AM+ Ay q = AMAy
(a) Stable and attractive p <0 qg >0
(b) Stable p=0 qg >0
(c) Unstable p >0 OR qg <0
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EXAMPLEL Application of the Criteria in
Tables 4.1 and 4.2

—3 I
In Example 1, Sec. 4.3, we have y'= [ | _J Y, P =

-6, q = 8, A = 4, a node by Table 4.1(a), which is
stable and attractive by Table 4.2(a).
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EXAMPLE?2 Free Motions of a Mass on a Spring

What kind of critical point does my" + cy' + ky = 0 In
Sec. 2.4 have?

Solution. Division by m gives y" = —(k/m)y — (c/m)y'.
To get a system, sety, =V, VY, =V (see Sec. 4.1).
Theny', = y" = —(k/m)y, — (c/m)y,. Hence

—A I 5 C k
=2+ —r+ — =0.
m m

, 0 |
y = Yy, det (A — Al) =
L —k/m —c/m

—kim —c/m — A

continued
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We see that p = —c/m, q = k/m, A = (c/m)? — 4k/m.
From this and Tables 4.1 and 4.2 we obtain the
following results. Note that in the last three cases the
discriminant A plays an essential role.

No damping.c =0, p =0, q> 0, a center.

Underdamping. ¢ < 4mk, p < 0,g >0, A<0, a
stable and attractive spiral point.

Critical damping. c2=4mk, p<0,g>0,A=0, a
stable and attractive node.

Overdamping. c?>4mk, p <0, q> 0, A > 0, a stable
and attractive node.

() BxGEE /S P 150



4.6 Nonhomogeneous Linear Systems of
ODESs

In this last section of Chap. 4 we discuss methods for solving
nonhomogeneous linear systems of ODEs

(1) y'=Ay+g
where the vector g(t) is not identically zero.

We assume g(t) and the entries of the n x n matrix A(t) to be
continuous on some Interval J of the t-axis.

continued
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From a general solution y"(t) of the homogeneous system

y'=Ay
and a particular solution y®)(t) of (1), we get
(2) y =y + y),

where y Is called a general solution of (1) because it includes
every solution of (1).
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Method of Undetermined Coefficients

As for a single ODE, this method is suitable if (1) the entries
of A are constants and (2) the components of g are

constants,

positive integer powers of t,
exponential functions, or
cosines and sines.

In such a case a particular solution y® is assumed in a form
similar to g; for instance, y® = u + vt + wt? if g has
components quadratic in t, with u, v, w to be determined by
substitution into (1). This is similar to Sec. 2.7, except for
the Modification Rule. .
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Example 1 Method of Undetermined Coefficients.
Modification Rule

Find a general solution of

b B —3 l T —6 o
(3) y = Ay +g= y + e .
I =3 2

Solution. A general equation of the homogeneous system Is
(see Example 1 in Sec. 4.3)

| l ‘ l
(4) vy = ¢ 72+ o e
I — 1

continued
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Since A = -2 is an eigenvalue of A, the function et on the
right also appears in y™., Thus, we must apply the
Modification Rule by setting

y® = ute?t + ve&t

Note that the first of these two terms is the analog of the
modification in Sec. 2.7, but it would not be sufficient here.
(Try it.)

By substitution,

— —6
d yP =ue™ —2ute™ —2ve™ = Aute ™ + Ave ' 4| e
dt 5

continued
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Equating the te~?-terms on both sides, we have
—2U = Au

Hence u must be an eigenvector of A corresponding to A = —2;
thusu=a[l 1]" withany a#0.

Equating the e-?-terms gives
{—6} |:ai| r)l} [—31)1 + vz:| |:—6}
u-— 2v=Av + thus — = + .
2 a 2U2 U1 — 3U2 2
Collecting terms and reshuffling gives
Vi—V,=—a—06
-V, +Vv,=-a+2.
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By addition,0 =-2a—-4,a=-2,.".v,=v; + 4. Letv, =k
v=[k k+4]"

We can simply choose k = 0. This gives

| 1 ‘ 1 1 ‘ 0] .
I —1 | 4

1 1 1 K
t)=c,| e +cC e -2 |[te™ e™
pin P S F P
1 1 1 0
=G| e +c,| e =2 |te™+]| |e™
1 -1 1 4

where €, = ¢, +K.
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Method of VVariation of Parameters

This method can be applied to nonhomogeneous
linear systems

(6) y' =AMy +9(t)

with variable A = A(t) and general g(t). It yields a
particular solution y® of (6) on some open interval J
on the t-axis if a general solution of the homogeneous
system y' = A()y on J is known. We explain the
method in terms of the previous example.
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EXAMPLEZ2 Solution by the Method of Variation of
Parameters

Solve (3) in Example 1.

Solution. A basis of solutions of the homogeneous
system is [e?t e and [e* e*]'. Hence the
general solution (4) of the homogenous system may
be written

0 e 2t et Cq
(7) y - —2t _ —4t | Y()e.
(& € (,2

continued
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Here, Y(t) = [y® y®@]T is the fundamental matrix (see
Sec. 4.2). As in Sec. 2.10 we replace the constant

vector ¢ by a variable vector u(t) to obtain a particular
solution

y® = Y(b)u(t).
Substitution into (3) y' = Ay + g gives
(8) Y'u+Yu =AYu +g.

Now since y® and y®@ are solutions of the
homogeneous system, we have

yb' = Ay@D y@' = Ay@  thus Y'= AY.

continued
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Hence Y'u = AYu, so that (8) reduces to
Yu'=g. The solution is u' = Y-q;
here we use that the inverse Y1 of Y (Sec. 4.0) exists

because the determinant of Y is the Wronskian W,
which is not zero for a basis. Equation (9) in Sec. 4.0

gives the form of Y-,

—4t —4t 2t 2t
I —e —e | | € e
Y_ ]_ — [
—2t —2t 2 | A |

6t
2e —e ¢

continued
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We multiply this by g, obtaining

, 4 I &2t A | —6e2 I —4 —2
oY eT 2 M M e % T2 — 8™ } —4e% |
Integration is done componentwise (just as

differentiation) and gives

t

—2 N —2t
u(r) = j |: 2?:| dr = |: o :|
0 L—4e™ —2e + 2

continued
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(where +2 comes from the lower limit of integration).
From this and Y In (7) we obtain

|:«:i_2t ..«r‘“}[ —21 } |:—21‘(z_2t—2c?_2t+20—4t:| ~u-27 2,
s P I I R P T W R Wt _[—zwz} ’ +[—2_ ©
The last term on the right is a solution of the
homogeneous system. Hence we can absorb it into

yW. We thus obtain as a general solution of the
system (3), in agreement with (5%),

= | 7 27 L
(9) .Y — lC]_ [ J f,)_ZIt + (,12 [ } f,)_éh‘; — 2 [ J HJ—ZT + [ } g—Zt'
I —1 I )

(f) BxgEsE /S P 161



SUMMARY OF CHAPTER 4

Whereas single electric circuits or single mass—spring
systems are modeled by single ODEs (Chap. 2),
networks of several circuits, systems of several
masses and springs, and other engineering problems
lead to systems of ODEs, involving several unknown
functions y,(t), ..., y,(t). Of central interest are first-
order systems (Sec. 4.2):

! »
vi= 16y, )

y' =f(t,y), incomponents,

’ 1)
)”1-)/3, - f'n,([s )':19 T y?’?»)’

continued
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to which higher order ODEs and systems of ODEs
can be reduced (Sec. 4.1). In this summary we let n =
2, SO that

Y1 =1t Y1, Yo)
(1) y' =1(t, y), In components,

Yo =1t Y Y))

continued
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Then we can represent solution curves as
trajectories in the phase plane (the y,y,-plane),
iInvestigate their totality [the “phase portrait” of (1)],
and study the kind and stability of the critical points
(points at which both f, and f, are zero), and classify
them as nodes, saddle points, centers, or spiral
points (Secs. 4.3, 4.4). These phase plane methods
are qualitative; with their use we can discover
various general properties of solutions without actually
solving the system. They are primarily used for
autonomous systems, that is, systems in which t
does not occur explicitly.

continued
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A linear system is of the form

) (11 (19 }?1 gl
(2)y=Ay—|—g, where A=|: :| y=|::|, g=|: :|
(21 (99 Vo 82
If g = 0, the system is called homogeneous and is of
the form

(3) y' = Ay.

continued
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If a;4, ..., &,, are constants, it has solutions y = xe™,
where A Is a solution of the quadratic equation

11 — A 19
= (a11 — M(aag — A) — 12091 = 0

(121 (122 - A

and x # 0 has components x,, X, determined up to a
multiplicative constant by

(@11 — A)Xp + a3%; = 0.

(These N's are called the eigenvalues and these
vectors X eigenvectors of the matrix A. Further
explanation is given in Sec. 4.0.)

continued
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A system (2) with g # O Is called nonhomogeneous.
Its general solution Is of the formy =y, +vy,, where y,
Is a general solution of (3) and y, a particuijar solution
of (2). Methods of determining the latter are discussed
In Sec. 4.6.

The discussion of critical points of linear systems
based on eigenvalues is summarized Iin Tables 4.1
and 4.2 in Sec. 4.4. It also applies to nonlinear
systems if the latter are first linearized. The key
theorem for this is Theorem 1 in Sec. 4.5, which also
iIncludes three famous applications, namely the
pendulum and van der Pol equations and the Lotka—
Volterra predator—prey population model.
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