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4.1 Systems of ODEs as Models

Example 1 Mixing Problem Involving Two Tanks

A mixing problem involving a single tank can be modeled
by a single ODE. The model will be a system of two first-
order ODEs.

Tank T1 and T2 in Fig. 77 contain initially 100 gal of water
each. In T1 the water is pure, whereas 150 lb of fertilizer are
dissolved in T2. By circulating liquid at a rate of 2 gal/min
and stirring (to keep the mixture uniform) the amounts of
fertilizer y1(t) in T1 and y2(t) in T2 change with time t.

How long should we let the liquid circulate so that T1 will
contain at least half as much fertilizer as there will be left in
T2?

continued
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Fig.77. Fertilizer content in Tanks T1 (lower curve)

and T2

continued
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Solution. Step 1. Setting up the model. As for a single tank,

the time rate of change y'1(t) of y1(t) equals inflow minus

outflow. Similarly for tank T2. From Fig. 77 we see that

Hence the mathematical model of our mixture problem is the

system of first-order ODEs

y'1 = –0.02y1 + 0.02y2 (Tank T1)

y'2 = 0.02y1 – 0.02y2 (Tank T2).
continued
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As a vector equation with column vector y = and matrix A
this becomes

Step 2. General solution.

As for a single equation, we try an exponential function of t,

(1) y = xeλt. Then y' = λxeλt = Axeλt.

Dividing the last equation λxeλt = Axeλt by eλt and
interchanging the left and right sides, we obtain

Ax = λx.

continued
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Since nontrivial solutions are needed, we have to look for

eigenvalues and eigenvectors of A. The eigenvalues are the

solutions of the characteristic equation

(2)

We see that λ1 = 0 and λ2 = –0.04. For our present A this gives

a) –0.02x1 + 0.02x2 = 0 (λ1 = 0)

b) (–0.02 + 0.04)x1 + 0.02x2 = 0 (λ2 = –0.04)

continued
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Hence x1 = x2 and x1 = –x2, respectively, and we can take x1 =
x2 = 1 and x1 = –x2 = 1. This gives two eigenvectors
corresponding to λ1 = 0 and λ2 = –0.04, respectively,
namely,

From (1) and the superposition principle, we thus obtain a
solution

(3)

where c1 and c2 are arbitrary constants. Later we shall call this 
a general solution.

continued
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Step 3. Use of initial conditions. The initial conditions are
y1(0) = 0 (no fertilizer in tank T1) and y2(0) = 150. From this
and (3) with t = 0 we obtain

In components this is c1 + c2 = 0, c1 – c2 = 150. The solution is
c1 = 75, c2 = –75. This gives the answer

∴ y1 = 75 – 75e-0.04t; y2 = 75 + 75e-0.04t

Figure 77 shows the exponential increase of y1 and the
exponential decrease of y2 to the common limit 75 lb.

continued
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Step 4.

Answer. T1 contains half the fertilizer amount of T2 if it contains

1/3 of the total amount, that is, 50 lb. Thus

y1 = 75 – 75e-0.04t = 50, e-0.04t = 1/3,

t = (ln 3)/0.04 = 27.5.

132
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Example 2  Electrical Network

Find the currents I1(t) and I2(t) in the network as shown.

Assume all currents and charges to be zero at t = 0, the instant

when the switch is closed.

continued
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Solution. Step 1. Setting up the mathematical model. The

model of this network is obtained from Kirchhoff’s voltage

law, as in Sec. 2.9 (where we considered single circuits). Let

I1(t) and I2(t) be the currents in the left and right loops,

respectively. In the left loop the voltage drops are LI'1 = I'1 [V]

over the inductor and R1(I1 – I2) = 4(I1 – I2) [V] over the

resistor, the difference because I1 and I2 flow through the

resistor in opposite directions. By Kirchhoff’s voltage law the

sum of these drops equals the voltage of the battery; that is, I'1
+ 4(I1 – I2) = 12, hence

(4a) I'1 = –4I1 + 4I2 + 12.

continued
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In the right loop the voltage drops are R2I2 = 6I2 [V] and

R1(I2 – I1) = 4(I2 – I1) [V] over the resistors and

(1/C)∫I2 dt = 4∫I2 dt [V] over the capacitor, and their sum is

zero,

Division by 10 and differentiation gives I'2 – 0.4I'1 + 0.4I2 = 0.

To simplify the solution process, we first get rid of 0.4I'1,

which by (4a) equals 0.4(–4I1 + 4I2 + 12). Substitution into

the present ODE gives

I'2 = 0.4I'1 – 0.4I2 = 0.4(–4I1 + 4I2 + 12) – 0.4I2

continued

132



歐亞書局 P

and by simplification

(4b) I'2 = –1.6I1 + 1.2I2 + 4.8.

In matrix form, (4) is (we write J since I is the unit matrix)

(5)

Step 2. Solving (5). Because of the vector g this is a
nonhomogeneous system.

We try to proceed as for a single ODE, solving first the

homogeneous system J' = AJ by substituting J = xeλt

J' = xeλt = Axeλt

∴ Ax =λx. continued
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Hence to obtain a nontrivial solution, we again need the
eigenvalues and eigenvectors:

Hence a “general solution” of the homogeneous system is

Jh = c1x
(1)e-2t + c2x

(2)e-0.8t.

For a particular solution of the nonhomogeneous system (5),
since g is constant, we try a constant column vector Jp = a
with components a1, a2.

Then J'p = 0, and substitution into (5) gives

continued
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–4.0a1 + 4.0a2 + 12.0 = 0

–1.6a1 + 1.2a2 + 4.8 = 0.

The solution is a1 = 3, a2 = 0; thus a = . Hence

(6) J = Jh + Jp = c1x
(1)e-2t + c2x

(2)e-0.8t + a;

in components,

I1 = 2c1e
-2t + c2e

-0.8t + 3

I2 = c1e
-2t + 0.8c2e

-0.8t.
continued
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The initial conditions give

I1(0) = 2c1 + c2 + 3 = 0

I2(0) = c1 + 0.8c2 = 0.

Hence c1 = –4 and c2 = 5. As the solution of our problem we

thus obtain

(7)            J = –4x(1)e-2t + 5x(2)e-0.8t + a.

In components (Fig. 79b),

I1 = –8e-2t + 5e-0.8t + 3

I2 = –4e-2t + 4e-0.8t.
continued
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Fig.79. Currents in Example 2
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Conversion of an nth-Order ODE to a System

Conversion of an ODE

THEOREM 1

An nth-order ODE

(8)

can be converted to a system of n first-order ODEs by setting

(9) y1 = y, y2 = y', y3 = y'',‥‥ , yn = y(n–1).

This system is of the form

(10)

134
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Example 3  Mass on a Spring

Let us consider the free motions of a mass on a spring

For this ODE (8) the system (10) is linear and homogeneous,

continued
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Setting y =        , we get in matrix form

The characteristic equation is

For an illustrative computation, let m = 1, c = 2, and k = 0.75:

λ2 + 2λ+ 0.75 = (λ+ 0.5)(λ+ 1.5) = 0.

This gives the eigenvalues λ1 = –0.5 and λ2 = –1.5.

continued

135



歐亞書局 P

Eigenvectors follow from the first equation in A – λI = 0,
which is –λx1 + x2 = 0.

For λ1 this gives 0.5x1 + x2 = 0, say, x1 = 2, x2 = –1.

For λ2 = –1.5 it gives 1.5x1 + x2 = 0, say, x1 = 1, x2 = –1.5.
These eigenvectors

This vector solution has the first component

y = y1 = 2c1e
-0.5t + c2e

-1.5t

which is the expected solution. The second component is its
derivative

y2 = y'1 = y' = –c1e
-0.5t – 1.5c2e

-1.5t.
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Phase Variable Canonical Form
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4.3 Constant-Coefficient Systems.

Phase Plane Method

General Solution

THEOREM 1

If the constant matrix A in the system (1) has a linearly

independent set of n eigenvectors, then the

corresponding solutions y(1), ‥‥, y(n) in (4) form a basis

of solutions of (1), and the corresponding general

solution is

(5)
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How to Graph Solutions in the Phase Plane

We shall now concentrate on systems (1) with

constant coefficients consisting of two ODEs

y'1 = a11y1 + a12y2

(6) y' = Ay; in components,

y'2 = a21y1 + a22y .

Of course, we can graph solutions of (6),

(7)

continued
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as two curves over the t-axis, one for each component

of y(t). (Figure 79a in Sec. 4.1 shows an example.)

But we can also graph (7) as a single curve in the

y1y2-plane. This is a parametric representation

(parametric equation) with parameter t. (See Fig. 79b

for an example. Many more follow. Parametric

equations also occur in calculus.) Such a curve is

called a trajectory (or sometimes an orbit or path) of

(6). The y1y2-plane is called the phase plane. If we fill

the phase plane with trajectories of (6), we obtain the

so-called phase portrait of (6).
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EXAMPLE1 Trajectories in the Phase Plane 

(Phase Portrait)

In order to see what is going on, let us find and graph
solutions of the system

(8)

Solution. By substituting y = xeλt and y' = xeλt and
dropping the exponential function we get Ax = λx. The
characteristic equation is

This gives the eigenvalues λ1 = –2 and λ2 = –4.
Eigenvectors are then obtained from

(–3 – λ)x1 + x2 = 0.
continued
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For λ1 = –2 this is –x1 + x2 = 0. Hence we can take x(1)

= [1 1]T. For λ2 = –4 this becomes x1 + x2 = 0, and an

eigenvector is x(2) = [1 –1]T. This gives the general

solution

Figure 81 shows a phase portrait of some of the

trajectories (to which more trajectories could be added

if so desired). The two straight trajectories correspond

to c1 = 0 and c2 = 0 and the others to other choices of

c1, c2.
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Critical Points of the System (6)

The point y = 0 in Fig. 81 seems to be a common

point of all trajectories, and we want to explore the

reason for this remarkable observation. The answer

will follow by calculus. Indeed, from (6) we obtain

(9)

This associates with every point P: (y1, y2) a unique

tangent direction dy2/dy1 of the trajectory passing

through P, except for the point P = P0: (0, 0), where

the right side of (9) becomes 0/0. This point P0, at

which dy2/dy1 becomes undetermined, is called a

critical point of (6).
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Five Types of Critical Points

EXAMPLE1 (Continued) Improper Node (Fig. 81)

An improper node is a critical point P0 at which all the

trajectories, except for two of them, have the same

limiting direction of the tangent. The two exceptional

trajectories also have a limiting direction of the tangent

at P0 which, however, is different.

The system (8) has an improper node at 0, as its phase

portrait Fig. 81 shows. The common limiting direction at

0 is that of the eigenvector x(1) = [1 1]T because e-4t

goes to zero faster than e-2t as t increases. The two

exceptional limiting tangent directions are those of x(2)

= [1 –1]T and –x(2) = [–1 1]T.

continued
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Fig.81. Trajectories of the system (8) (Improper node)
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EXAMPLE2  Proper Node (Fig. 82)

A proper node is a critical point P0 at which every

trajectory has a definite limiting direction and for any

given direction d at P0 there is a trajectory having d as

its limiting direction.

The system

(10)

continued
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has a proper node at the origin (see Fig. 82). Indeed,

the matrix is the unit matrix. Its characteristic equation

(1 –λ)2 = 0 has the root λ = 1. Any x ≠ 0 is an

eigenvector, and we can take [1 0]T and [0 1]T.

Hence a general solution is

continued
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Fig.82. Trajectories of the system (10) (Proper node)
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EXAMPLE3  Saddle Point (Fig. 83)

A saddle point is a critical point P0 at which there are

two incoming trajectories, two outgoing trajectories,

and all the other trajectories in a neighborhood of P0

bypass P0.

The system

(11)

continued
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has a saddle point at the origin. Its characteristic

equation (1 –λ)(–1 –λ) = 0 has the roots λ1 = 1 and λ2

= –1. For λ1= 1 an eigenvector [1 0]T is obtained from

the second row of (A –λI)x = 0, that is, 0x1 + (–1 –

1)x2 = 0. For λ2 = –1 the first row gives [0 1]T. Hence

a general solution is

This is a family of hyperbolas (and the coordinate

axes); see Fig. 83.

continued
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Fig.83. Trajectories of the system (11) (Saddle point)
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EXAMPLE4  Center (Fig. 84)

A center is a critical point that is enclosed by infinitely
many closed trajectories.

The system

(12)

has a center at the origin. The characteristic equation
λ2 + 4 = 0 gives the eigenvalues 2i and –2i. For 2i an
eigenvector follows from the first equation –2ix1 + x2 =
0 of (A –λI)x = 0, say, [1 2i]T. For λ = –2i that
equation is –(–2i)x1 + x2 = 0 and gives, say, [1 –2i]T.
Hence a complex general solution is

(12*)

continued143
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The next step would be the transformation of this

solution to real form by the Euler formula (Sec. 2.2).

But we were just curious to see what kind of

eigenvalues we obtain in the case of a center.

Accordingly, we do not continue, but start again from

the beginning and use a shortcut. We rewrite the

given equations in the form y'1 = y2, 4y1 = –y'2; then

the product of the left sides must equal the product of

the right sides,

This is a family of ellipses (see Fig. 84) enclosing the

center at the origin.
continued
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Fig.84. Trajectories of the system (12) (Center)
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EXAMPLE5  Spiral Point (Fig. 85)

A spiral point is a critical point P0 about which the

trajectories spiral, approaching P0 as t → ∞(or tracing

these spirals in the opposite sense, away from P0).

The system

(13)

continued
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has a spiral point at the origin, as we shall see. The

characteristic equation is λ2 + 2λ+ 2 = 0. It gives the

eigenvalues –1 + i and –1 – I. Corresponding

eigenvectors are obtained from (–1 –λ)x1 + x2 = 0.

For λ = –1 + i this becomes –ix1 + x2 = 0 and we can

take [1 i]T as an eigenvector. Similarly, an

eigenvector corresponding to –1 – i is [1 –i]T. This

gives the complex general solution

continued
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The next step would be the transformation of this

complex solution to a real general solution by the

Euler formula. But, as in the last example, we just

wanted to see what eigenvalues to expect in the case

of a spiral point. Accordingly, we start again from the

beginning and instead of that rather lengthy

systematic calculation we use a shortcut. We multiply

the first equation in (13) by y1, the second by y2, and

add, obtaining

y1y'1 + y2y'2 = –(y1
2 + y2

2).

continued
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We now introduce polar coordinates r, t, where r2 =

y1
2 + y2

2. Differentiating this with respect to t gives 2rr'

= 2y1y'1 + 2y2y'2. Hence the previous equation can be

written

rr' = –r2,

Thus, r' = –r, dr/r = –dt, ln│r│ = –t + c*, r = ce-t.

For each real c this is a spiral, as claimed. (see Fig.

85).

continued
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Fig.85. Trajectories of the system (13) (Spiral point)
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EXAMPLE6 No Basis of Eigenvectors Available. 

Degenerate Node (Fig. 86)

This cannot happen if A in (1) is symmetric (akj = ajk,

as in Examples 1–3) or skew-symmetric (akj = –ajk,

thus ajj = 0). And it does not happen in many other

cases (see Examples 4 and 5). Hence it suffices to

explain the method to be used by an example.

Find and graph a general solution of

(14)

continued
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Solution. A is not skew-symmetric! Its characteristic 

equation is

It has a double root λ= 3. Hence eigenvectors are

obtained from (4 –λ)x1 + x2 = 0, thus from x1 + x2 = 0,

say, x(1) = [1 –1]T and nonzero multiples of it (which

do not help). The method now is to substitute

y(2) = xteλt + ueλt

continued
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with constant u = [u1 u2]
T into (14). (The xt-term

alone, the analog of what we did in Sec. 2.2 in the

case of a double root, would not be enough. Try it.)

This gives

y'(2) = xeλt + λxteλt + λueλt = Ay(2) = Axteλt + Aueλt.

On the right, Ax = λx. Hence the terms λxteλt cancel,

and then division by eλt gives

x +λu = Au, thus (A –λI)u = x.

Here λ= 3 and x = [1 –1]T, so that

continued145



歐亞書局 P

A solution, linearly independent of x = [1 –1]T, is u =

[0 1]T. This yields the answer (Fig. 86)

The critical point at the origin is often called a

degenerate node. c1y
(1) gives the heavy straight line,

with c1 > 0 the lower part and c1 < 0 the upper part of

it. y(2) gives the right part of the heavy curve from 0

through the second, first, and—finally—fourth

quadrants. –y(2) gives the other part of that curve.

continued
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Fig.86. Degenerate node in Example 6
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4.4 Criteria for Critical Points. Stability

We continue our discussion of homogeneous linear

systems with constant coefficients

(1)
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(3)

We also recall from Sec. 4.3 that there are various

types of critical points, and we shall now see how

these types are related to the eigenvalues. The latter

are solutions λ=λ1 and λ2 of the characteristic

equation

(4)

continued
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This is a quadratic equation λ2 – pλ + q = 0 with

coefficients p, q and discriminant Δ given by

(5) p = a11 + a22, q = det A = a11a22 – a12a21,

Δ = p2 – 4q.

From calculus we know that the solutions of this

equation are

(6)
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Table 4.1 Eigenvalue Criteria for Critical Points

(Derivation after Table 4.2)
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Stability

Stable, Unstable, Stable and Attractive(1)

DEFINITION

A critical point P0 of (1) is called stable if, roughly, all

trajectories of (1) that at some instant are close to P0

remain close to P0 at all future times; precisely: if for

every disk Dε of radius ε< 0 with center P0 there is a disk

Dδ of radius δ > 0 with center P0 such that every

trajectory of (1) that has a point P1 (corresponding to t =

t1, say) in Dδ has all its points corresponding to t ≥ t1 in Dε.

See Fig. 89.

continued
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Stable, Unstable, Stable and Attractive(2)

DEFINITION

P0 is called unstable if P0 is not stable.

P0 is called stable and attractive (or asymptotically

stable) if P0 is stable and every trajectory that has a

point in Dδ approaches P0 as t →∞. See Fig. 90.
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Fig.89. Stable critical point P0 of (1) (The trajectory 

initiating at P1 stays in the disk of radius ε.)
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Fig.90. Stable and attractive critical point P0 of (1)
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Table 4.2  Stability Criteria for Critical Points
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EXAMPLE1 Application of the Criteria in 

Tables 4.1 and 4.2

In Example 1, Sec. 4.3, we have y' = y, p =

–6, q = 8, Δ = 4, a node by Table 4.1(a), which is

stable and attractive by Table 4.2(a).
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EXAMPLE2 Free Motions of a Mass on a Spring

What kind of critical point does my" + cy' + ky = 0 in

Sec. 2.4 have?

Solution. Division by m gives y'' = –(k/m)y – (c/m)y'.

To get a system, set y1 = y, y2 = y' (see Sec. 4.1).

Then y'2 = y'' = –(k/m)y1 – (c/m)y2. Hence

continued
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We see that p = –c/m, q = k/m, Δ = (c/m)2 – 4k/m.

From this and Tables 4.1 and 4.2 we obtain the

following results. Note that in the last three cases the

discriminant Δ plays an essential role.

No damping. c = 0, p = 0, q > 0, a center.

Underdamping. c2 < 4mk, p < 0, q > 0, Δ < 0, a

stable and attractive spiral point.

Critical damping. c2 = 4mk, p < 0, q > 0, Δ = 0, a

stable and attractive node.

Overdamping. c2 > 4mk, p < 0, q > 0, Δ > 0, a stable

and attractive node.
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4.6 Nonhomogeneous Linear Systems of 

ODEs

In this last section of Chap. 4 we discuss methods for solving

nonhomogeneous linear systems of ODEs

(1) y' = Ay + g

where the vector g(t) is not identically zero.

We assume g(t) and the entries of the n × n matrix A(t) to be

continuous on some interval J of the t-axis.

continued
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From a general solution y(h)(t) of the homogeneous system

y'= Ay

and a particular solution y(p)(t) of (1), we get

(2)                               y = y(h) + y(p).

where y is called a general solution of (1) because it includes

every solution of (1).
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Method of Undetermined Coefficients

As for a single ODE, this method is suitable if (1) the entries

of A are constants and (2) the components of g are

• constants,

• positive integer powers of t,

• exponential functions, or

• cosines and sines.

In such a case a particular solution y(p) is assumed in a form

similar to g; for instance, y(p) = u + vt + wt2 if g has

components quadratic in t, with u, v, w to be determined by

substitution into (1). This is similar to Sec. 2.7, except for

the Modification Rule. .
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Example 1 Method of Undetermined Coefficients. 

Modification Rule

Find a general solution of

(3)

Solution. A general equation of the homogeneous system is

(see Example 1 in Sec. 4.3)

(4)

continued
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Since λ = –2 is an eigenvalue of A, the function e-2t on the

right also appears in y(h). Thus, we must apply the

Modification Rule by setting

y(p) = ute-2t + ve-2t

Note that the first of these two terms is the analog of the

modification in Sec. 2.7, but it would not be sufficient here.

(Try it.)

By substitution,

continued
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Equating the te-2t-terms on both sides, we have

–2u = Au

Hence u must be an eigenvector of A corresponding to λ = –2;

thus u = a[1 1]T with any a ≠ 0.

Equating the e-2t-terms gives

Collecting terms and reshuffling gives

v1 – v2 = –a – 6

–v1 + v2 = –a + 2.
continued
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By addition, 0 = –2a – 4, a = –2,∴v2 = v1 + 4. Let v1 = k

v = [k   k + 4]T

We can simply choose k = 0. This gives

160
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Method of Variation of Parameters

This method can be applied to nonhomogeneous

linear systems

(6) y' = A(t)y + g(t)

with variable A = A(t) and general g(t). It yields a

particular solution y(p) of (6) on some open interval J

on the t-axis if a general solution of the homogeneous

system y' = A(t)y on J is known. We explain the

method in terms of the previous example.

160



歐亞書局 P

EXAMPLE2 Solution by the Method of Variation of 

Parameters

Solve (3) in Example 1.

Solution. A basis of solutions of the homogeneous

system is [e-2t e-2t]T and [e-4t e-4t]T. Hence the

general solution (4) of the homogenous system may

be written

(7)

continued
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Here, Y(t) = [y(1) y(2)]T is the fundamental matrix (see

Sec. 4.2). As in Sec. 2.10 we replace the constant

vector c by a variable vector u(t) to obtain a particular

solution

y(p) = Y(t)u(t).

Substitution into (3) y' = Ay + g gives

(8) Y'u + Yu' = AYu + g.

Now since y(1) and y(2) are solutions of the

homogeneous system, we have

y(1)' = Ay(1), y(2)' = Ay(2), thus Y' = AY.

continued
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Hence Y'u = AYu, so that (8) reduces to

Yu' = g. The solution is u' = Y-1g;

here we use that the inverse Y-1 of Y (Sec. 4.0) exists

because the determinant of Y is the Wronskian W,

which is not zero for a basis. Equation (9) in Sec. 4.0

gives the form of Y-1,

continued
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We multiply this by g, obtaining

Integration is done componentwise (just as

differentiation) and gives

continued
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(where +2 comes from the lower limit of integration).

From this and Y in (7) we obtain

The last term on the right is a solution of the

homogeneous system. Hence we can absorb it into

y(h). We thus obtain as a general solution of the

system (3), in agreement with (5*),

(9)
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SUMMARY OF CHAPTER 4

Whereas single electric circuits or single mass–spring

systems are modeled by single ODEs (Chap. 2),

networks of several circuits, systems of several

masses and springs, and other engineering problems

lead to systems of ODEs, involving several unknown

functions y1(t), ‥‥, yn(t). Of central interest are first-

order systems (Sec. 4.2):

y' = f(t, y), in components,

continued
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to which higher order ODEs and systems of ODEs

can be reduced (Sec. 4.1). In this summary we let n =

2, so that

y'1 = f1(t, y1, y2)

(1) y' = f(t, y), in components,

y'2 = f2(t, y1, y2)

continued
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Then we can represent solution curves as

trajectories in the phase plane (the y1y2-plane),

investigate their totality [the “phase portrait” of (1)],

and study the kind and stability of the critical points

(points at which both ƒ1 and ƒ2 are zero), and classify

them as nodes, saddle points, centers, or spiral

points (Secs. 4.3, 4.4). These phase plane methods

are qualitative; with their use we can discover

various general properties of solutions without actually

solving the system. They are primarily used for

autonomous systems, that is, systems in which t

does not occur explicitly.

continued
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A linear system is of the form

(2)

If g = 0, the system is called homogeneous and is of

the form

(3) y' = Ay.

continued
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If a11, ‥‥, a22 are constants, it has solutions y = xeλt,

where λ is a solution of the quadratic equation

and x ≠ 0 has components x1, x2 determined up to a

multiplicative constant by

(a11 – λ)x1 + a12x2 = 0.

(These λ’s are called the eigenvalues and these

vectors x eigenvectors of the matrix A. Further

explanation is given in Sec. 4.0.)

continued
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A system (2) with g ≠ 0 is called nonhomogeneous.
Its general solution is of the form y = yh + yp, where yh

is a general solution of (3) and yp a particular solution
of (2). Methods of determining the latter are discussed
in Sec. 4.6.

The discussion of critical points of linear systems
based on eigenvalues is summarized in Tables 4.1
and 4.2 in Sec. 4.4. It also applies to nonlinear
systems if the latter are first linearized. The key
theorem for this is Theorem 1 in Sec. 4.5, which also
includes three famous applications, namely the
pendulum and van der Pol equations and the Lotka–
Volterra predator–prey population model.
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